The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Yong KIM(40hit)

21-40hit(40hit)

  • Adaptive Depth-Map Coding for 3D-Video

    Kyung-Yong KIM  Gwang-Hoon PARK  Doug-Young SUH  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E93-D No:8
      Page(s):
    2262-2272

    This paper proposes an efficient adaptive depth-map coding scheme for generating virtual-view images in 3D-video. Virtual-view images can be generated by view-interpolation based on the decoded depth-map of the image. The proposed depth-map coding scheme is designed to have a new gray-coding-based bit-plane coding method for efficiently coding the depth-map images on the object-boundary areas, as well as the conventional DCT-based coding scheme (H.264/AVC) for efficiently coding the inside area images of the objects or the background depth-map images. Simulation results show that the proposed coding scheme, in comparison with the H.264/AVC coding scheme, improves the BD-rate savings 6.77%-10.28% and the BD-PSNR gains 0.42 dB-0.68 dB. It also improves the subjective picture quality of synthesized virtual-view images using decoded depth-maps.

  • Degrees-of-Freedom Based on Interference Alignment with Imperfect Channel Knowledge

    Won-Yong SHIN  Muryong KIM  Hyoseok YI  Ajung KIM  Bang Chul JUNG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:12
      Page(s):
    3579-3582

    The impact and benefits of channel state information (CSI) are analyzed in terms of degrees-of-freedom (DoFs) in a K-user interference network operating over time-selective channels, where the error variance of CSI estimation is assumed to scale with an exponent of the received signal-to-noise ratio (SNR). The original interference alignment (IA) scheme is used with a slight modification in the network. Then, it is shown that the DoFs promised by the original IA can be fully achieved under the condition that the CSI quality order, represented as a function of the error variance and the SNR, is greater than or equal to 1. Our result is extended to the case where the number of communication pairs, K, scales with the SNR, i.e., infinite K scenario, by introducing the user scaling order. As a result, this letter provides vital information to the system designer in terms of allocating training resources for channel estimation in practical cellular environments using IA.

  • Exploiting Metadata of Absent Objects for Proxy Cache Consistency

    Jooyong KIM  Hyokyung BAHN  Kern KOH  

     
    PAPER-Network

      Vol:
    E84-B No:5
      Page(s):
    1406-1412

    Caching at the Web proxy server plays an important role in reducing the response time, the network traffic, and the load of Web servers. Many recent studies have proposed and examined the replacement and consistency policies for the proxy cache, which plays a central role in the performance of caching components. For better performance, they exploit various metadata of Web objects, such as the reference count, reference time, and modification time information of past behaviors, to estimate the re-reference likelihood and freshness of the objects. However, all of these known to the authors use the metadata only when the actual object is in the cache. We observed from various proxy traces that about 20-30% of clients' requests incurred only the validity checks of cached objects without transferring actual objects from the proxy server. In this case, only the metadata are necessary at the proxy server. This paper proposes a proxy cache consistency policy that uses the metadata even for absent objects. These include the time information of evicted objects from the cache and those out of the header-only replies from Web servers. Trace-driven simulations with public proxy cache traces show that our policy reduces the response time and the number of connections to Web servers significantly.

  • A Novel Approach for Modeling a Hybrid ARQ (Automatic Repeat Request) Based on the Hidden Markov Model

    Yong Ho KIM  Tae Yong KIM  Young Yong KIM  

     
    LETTER-Network

      Vol:
    E88-B No:9
      Page(s):
    3772-3775

    In this letter, we propose a novel approach for use in the analytical modeling of the overall performance of a Hybrid ARQ (type I and II) together with arbitrary channel model, based on Hidden Markov Model (HMM). Using the combined HMM model developed for involved ARQ protocols with the finite state channel model, such critical performance measure as throughput and delay can be derived in closed form. Analytical results are derived for Stop-and-Wait as well as Go-back-N type together with the type I and type II Hybrid ARQ scheme adopted. We compare the analytical results along with the simulation results in order to check the correctness our model, and show the efficiency of our approach by applying it to realistic environments such as the CDMA IS-95 system with its derived equations.

  • On the Diversity-Multiplexing Tradeoff of the Half-Duplex DDF MIMO Relay Protocol

    Eunchul YOON  Sun-Yong KIM  Suhan CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    540-550

    The analytical derivation of the diversity-multiplexing tradeoff (DMT) for a half-duplex dynamic decode and forward (DDF) MIMO relay protocol has been regarded as an open problem. Recently, however, a minimization problem setting has been found, the solution of which corresponds to the DMT function for a half-duplex DDF MIMO relay protocol. In this paper, the DMT functions for three special half-duplex DDF MIMO relay protocols using two antennas at two of three nodes, source, relay, and destination nodes, and a single antenna at the other node are derived first. Then, the DMT function for a special half-duplex DDF MIMO relay protocol using two antennas at every node is derived. These DDF MIMO relay protocols are compared with one another and with some NAF MIMO relay protocols by simulation.

  • A Fast and Stable Method for Detecting and Tracking Medical Organs in MRI Sequences

    Dong Joong KANG  Chang Yong KIM  Yang Seok SEO  In So KWEON  

     
    LETTER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:2
      Page(s):
    497-499

    A discrete dynamic model for defining contours in 2-D medical images is presented. An active contour in this objective is optimized by a dynamic programming algorithm, for which a new constraint that has fast and stable properties is introduced. The internal energy of the model depends on local behavior of the contour, while the external energy is derived from image features. The algorithm is able to rapidly detect convex and concave objects even when the image quality is poor.

  • An Efficient Transmission Slot Selection Scheme for MC-CDMA Systems with Packet Loss and Delay Bound Constraints

    Ji-Bum KIM  Kyung-Ho SOHN  Chung-Ha KOH  Young-Yong KIM  

     
    LETTER-Network

      Vol:
    E88-B No:9
      Page(s):
    3779-3783

    In this letter, we propose an efficient transmission slot selection scheme for Band Division Multi-Carrier-CDMA (BD-MC-CDMA) systems under the constraints of packet loss and delay bound for each individual session. By utilizing channel dynamics together with the delay deadline and loss history, one can determine whether to transmit or not during each time slot, based on the prediction of future channel variations. To validate the efficiency of the proposed algorithm, we model each sub-band as a discrete time Markov Chain using a finite state Markov channel (FSMC) and derive the criteria required for transmission decision. Simulation results show that our proposed scheme can satisfy quality of service (QoS) requirements for real-time traffic with minimum use of resources, while increasing throughput of non-real-time traffic with the resources saved from real-time traffic.

  • Multiple Sink Positioning and Routing to Maximize the Lifetime of Sensor Networks

    Haeyong KIM  Taekyoung KWON  Pyeongsoo MAH  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3499-3506

    In wireless sensor networks, the sensor nodes collect data, which are routed to a sink node. Most of the existing proposals address the routing problem to maximize network lifetime in the case of a single sink node. In this paper, we extend this problem into the case of multiple sink nodes. To maximize network lifetime, we consider the two problems: (i) how to position multiple sink nodes in the area, and (ii) how to route traffic flows from sensor nodes to sink nodes. In this paper, the solutions to these problems are formulated into a Mixed Integer Linear Programming (MILP) model. However, it is computationally difficult to solve the MILP formulation as the size of sensor network grows because MILP is NP-hard. Thus, we propose a heuristic algorithm, which produces a solution in polynomial time. From our experiments, we found out that the proposed heuristic algorithm provides a near-optimal solution for maximizing network lifetime in dense sensor networks.

  • Fast Search of a Similar Patch for Self-Similarity Based Image Super Resolution

    Jun-Sang YOO  Ji-Hoon CHOI  Kang-Sun CHOI  Dae-Yeol LEE  Hui-Yong KIM  Jong-Ok KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/05/16
      Vol:
    E99-D No:8
      Page(s):
    2194-2198

    In the self-similarity super resolution (SR) approach, similar examples are searched across down-scales in the image pyramid, and the computations of searching similar examples are very heavy. This makes it difficult to work in a real-time way under common software implementation. Therefore, the search process should be further accelerated at an algorithm level. Cauchy-Schwarz inequality has been used previously for fast vector quantization (VQ) encoding. The candidate patches in the search region of SR are analogous to the code-words in the VQ, and Cauchy-Schwarz inequality is exploited to exclude implausible candidate patches early. Consequently, significant acceleration of the similar patch search process is achieved. The proposed method can easily make an optimal trade-off between running speed and visual quality by appropriately configuring the bypass-threshold.

  • Joint Realtime Adaptation of Channel Assignment and Cell Coverage in Femto Cell Systems

    Chung Ha KOH  Kang Jin YOON  Kyungmin PARK  Young Yong KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    203-206

    Femto cell systems have been the one of the key technologies for ubiquitous networks, and some of them are already serviced by manufacturers. Femto base stations are deployed randomly and without pre-planning, so the femto system has a wider variation in topology than cellular networks. Therefore, a specialized resource assignment algorithm is essential for efficient performance of the femto cell. In this paper, we propose a realtime channel assignment algorithm for adapting to the varying environments, including new cell deployment or power switch off. Our algorithm is a form of a sequential graph coloring problem which outperforms other fixed allocation algorithms. Simulation results show realtime assignment has better performance than the fixed allocation when the wireless environment changes faster than the tracking operation time.

  • Row-by-Row Dynamic Source-Line Voltage Control (RRDSV) Scheme for Two Orders of Magnitude Leakage Current Reduction of Sub-1-V-VDD SRAM's

    Kyeong-Sik MIN  Kouichi KANDA  Hiroshi KAWAGUCHI  Kenichi INAGAKI  Fayez Robert SALIBA  Hoon-Dae CHOI  Hyun-Young CHOI  Daejeong KIM  Dong Myong KIM  Takayasu SAKURAI  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:4
      Page(s):
    760-767

    A new Row-by-Row Dynamic Source-Line Voltage Control (RRDSV) scheme is proposed to suppress leakage current by two orders of magnitude in the SRAM's for sub-70 nm process technology with sub-1-V VDD. This two-order leakage reduction is caused from the cooperation of reverse body-to-source biasing and Drain Induced Barrier Lowering (DIBL) effects. In addition, metal shields are proposed to be inserted between the cell nodes and the bit lines not to allow the cell nodes to be flipped by the external bit-line coupling noise in this paper. A test chip has been fabricated to verify the effectiveness of the RRDSV scheme with the metal shields by using 0.18-µm CMOS process. The retention voltages of SRAM's with the metal shields are measured to be improved by as much as 40-60 mV without losing the stored data compared to the SRAM's without the shields.

  • Multiuser Distortion Management Scheme for H.264 Video Transmission in OFDM Systems

    Hojin HA  Young Yong KIM  

     
    PAPER-Network

      Vol:
    E92-B No:3
      Page(s):
    850-857

    In this paper, we propose a subcarrier resource allocation algorithm for managing the video quality degradation for multiuser orthogonal frequency division multiplex (OFDM) systems. The proposed algorithm exploits the unequal importance existing in different picture types for video coding and the diversity of subcarriers for multiuser systems. A model-based performance metric is first derived considering the error concealment and error propagation properties of the H.264 video coding structure. Based on the information on video quality enhancement existing in a packet to be transmitted, we propose the distortion management algorithm for balancing the subcarriers and power usages for each user and minimizing the overall video quality degradation. In the simulation results, the proposed algorithm demonstrates a more gradual video quality degradation for different numbers of users compared with other resource allocation schemes.

  • A Robust Detector for Rapid Code Acquisition in Non-Gaussian Impulsive Channels

    Seokho YOON  Suk Chan KIM  Sun Yong KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    809-815

    Recently, a novel detector was proposed by the authors for code acquisition in non-Gaussian impulsive channels [3], which dramatically outperforms the conventional squared-sum detector; however, it requires exact knowledge of the non-Gaussian noise dispersion. In this paper, a robust detector is proposed, which employs the signs and ranks of the received signal samples, instead of their actual values, and so does not require knowledge of the non-Gaussian noise dispersion. The acquisition performance of the proposed detector is compared with that of the detector of [3] in terms of the mean acquisition time. The simulation results show that the proposed scheme is not only robust to deviations from the true value of the non-Gaussian noise dispersion, but also has comparable performance to that of the scheme of [3] using exact knowledge of the non-Gaussian noise dispersion.

  • Optimal Ratio of Direct/Multi-Hop Forwarding for Network Lifetime Maximization in Wireless Sensor Networks

    Jeong-Jun SUH  Young Yong KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:10
      Page(s):
    1861-1864

    In this letter, we discuss a forwarding method for maximizing network lifetime, which combines multi-hop forwarding and direct forwarding with a direct/multi-hop forwarding ratio of each sensor node. The direct forwarding ratio refers to the forwarding amount ratio of sensor nodes' own data directly towards a sink node in one packet/instance data generation rate. We tackle an optimization problem to determine the direct forwarding ratio of each sensor node, maximizing network lifetime, as well as nearly guaranteeing energy consumption balancing characteristics. The optimization problem is tackled through the Lagrange multiplier approach. We found that the direct forwarding ratio is overall inversely proportional to the increase of node index in h < i ≤ N case. Finally, we compare energy consumption and network lifetime of the proposed forwarding method with other existing forwarding methods. The numerical results show that the proposed forwarding method balances energy consumption in most of the sensor nodes, comparing with other existing forwarding methods, such as multi-hop forwarding and direct forwarding. The proposed forwarding method also maximizes network lifetime.

  • Traffic Rate and Shape Control with Queue Threshold Congestion Recognition

    Blair COLLIER  Hyong KIM  

     
    PAPER-Control and performance

      Vol:
    E81-B No:2
      Page(s):
    409-416

    This paper presents analysis of a congestion control scheme in which a multiplexer notifies upstream traffic sources when its buffer level crosses a preset threshold. Upon notification, the traffic streams are reshaped to a form less likely to cause overflow through rate or burstiness restrictions, or a combination of the two. For the analysis, the traffic is modeled by two Markov Modulated Rate Processes (MMRP's), one for above and one for below the threshold, and an iterative fluid approximation technique is used to determine the buffer occupancy distribution. Simulation results verify the accuracy of the approach, and the analysis is used to study the effect of varying the threshold and shaping function.

  • Channel-Aware Distributed Throughput-Based Fair Queueing for Wired and Wireless Packet Communication Networks

    Sang-Yong KIM  Hideaki TAKAGI  

     
    PAPER-Network

      Vol:
    E91-B No:4
      Page(s):
    1025-1033

    Fair queueing is a service scheduling discipline to pursue the fairness among users in packet communication networks. Many fair queueing algorithms, however, have problems of computational overhead since the central scheduler has to maintain a certain performance counter for each flow of user packets based on the global virtual time. Moreover, they are not suitable for wireless networks with high probability of input channel errors due to the lack or complexity in the compensation mechanism for the recovery from the error state. In this paper, we propose a new, computationally efficient, distributed fair queueing scheme, which we call Channel-Aware Throughput Fair Queueing (CATFQ), that is applicable to both wired and wireless packet networks. In our CATFQ scheme, each flow is equipped with a counter that measures the weighted throughput achievement while it has a backlog of packets. At the end of every service to a packet, the scheduler simply selects a flow with the minimum counter value as the one from which a packet is served next. We show that the difference between any two throughput counters is bounded. Our scheme significantly reduces the scheduler's computational overhead and guarantees fair throughput for all flows. For wireless networks with error-prone channels, the service chance lost in bad channel condition is compensated quickly as the channel recovers. Our scheme suppresses the service for leading flows, brings short-term fairness for flows without channel errors, and achieves long-term fairness for all flows. These merits are verified by simulation.

  • A Compostite Signal Detection Scheme in Additive and Signal-Dependent Noise

    Sangyoub KIM  Iickho SONG  Sun Yong KIM  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E76-A No:10
      Page(s):
    1790-1803

    When orignal signals are contaminated by both additive and signal-dependent noise components, the test statistics of locally optimum detector are obtained for detection of weak composite signals based on the generalized Neyman-Pearson lemma. In order to consider the non-additive noise as well as purely-additive noise, a generalized observation model is used in this paper. The locally optimum detector test statisics are derived for all different cases according to the relative strengths of the known signal, random signal, and signal-dependent noise components. Schematic diagrams of the structures of the locally optimum detector are also included. The finite sample-size performance characteristics of the locally optimum detector are compared with those of other common detectors.

  • A Simplified Ordering Scheme Minimizing Average BER for MIMO Systems with Adaptive Modulation

    Kyeongyeon KIM  Seijoon SHIM  Chungyong LEE  Young Yong KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:11
      Page(s):
    4390-4393

    This paper proposes a new detection ordering scheme, which minimizes average error rate of the MIMO system with per antenna rate control. This paper shows an optimal scheme minimizing average error rate expressed by the Q function, and simplifies the optimal scheme by using the minimum equivalent SINR scaled by modulation indices, based on approximated error rate. In spite of reduced complexity, the simplified scheme demonstrates the almost same performance as the optimal scheme. Owing to the diversity of detection ordering, the proposed scheme has over 2 dB higher SNR gain at the BER of 10-3 than the existing ordering schemes in balanced array size systems.

  • Dynamic Channel Adaptation for IP Based Split Spectrum Femto/Macro Cellular Systems

    Kyungmin PARK  Chungha KOH  Kangjin YOON  Youngyong KIM  

     
    LETTER

      Vol:
    E94-B No:3
      Page(s):
    694-697

    In femto/macro cellular networks, the stability and fairness problems caused by the unplanned and random characteristic of femtocells must be solved. By applying queueing theory in IP based femto/macro cellular networks, we found the stability condition, and described two kinds of cell section policies of users. As a main contribution, we provided the adaptive channel distribution algorithm which minimizes the average packet sojourn time at transmitting systems and keeps the whole systems stable and fair among cells. Through experiments in various environments, we analyzed the influence of channel reuse factor, cell selection policies, and the number of femtocells on system performance.

  • An LTE-Band Dual-Antenna Design with an Enhanced Antenna Efficiency

    Jinyong KIM  Kyungho CHUNG  Yochuol HO  Moonil KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:11
      Page(s):
    3554-3556

    A neutralization line is internally added to a 770 MHz LTE-band miniature dual-antenna system to improve its antenna efficiency. The odd-mode antenna impedance simulations indicate that the position of the neutralization line along the radiating structure determines the operation frequency. Measurement results show that the line reduces the antenna coupling loss from -6 to -17 dB while improving the individual antenna efficiency from 42 to 65 percent at 770 MHz.

21-40hit(40hit)